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The Cram6r-Rao lower bound for the minimum variance of an unbiased 
estimator is derived from the second law of thermodynamics. The inequality is 
in the form of a uncertainty relation for conjugate thermodynamic variables 
where the minimum uncertainty occurs for reversible processes in which the 
conjugate variables are completely negatively correlated. An upper bound on 
the probability for arbitrarily large deviations in the energy is given in terms of 
the difference in entropies at the initial temperature of the body and the final 
equilibrium temperature of the medium. 

1. INTRODUCTION 

Statistical thermodynamics shares many common features with the 
mathematical theory of statistical inference (Mandelbrot,  1956, 1962, 1964; 
Lavenda and Scherer, 1987a). In fact, Boltzmann, Gibbs, and, to a greater 
extent, Szilard (1925) anticipated the modern theory of statistical inference 
as developed by Fisher (1973), Neyman and Pearson (1933), and others. 
The reason why statistical thermodynamics, or thermostatistics, possesses 
many of the properties dictated by mathematical statistics is that the distribu- 
tion that maximizes the entropy, or equivalently that minimizes the "discrim- 
ination information" in the sense of Kullback and Leibler (1951), belongs 
to an exponential family of distributions for which means and modes 
coincide. However, there is an important distinction between entropy and 
information, apart from a sign, insofar as the prior distribution in thermo- 
statistics is an "improper" distribution and hence not normalizable. The 
prior distribution, in thermostatistics, represents the degeneracy of different 
states with the same energy (Gibbs, 1902; Khinchin, 1949) and is responsible 
for the fact that the entropy, defined as the negative of the expected value 
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of the logarithm of the ratio of the posterior and prior densities, has no 
well-defined sign, unlike that of the discrimination information (Kullback, 
1959). 

One of  the fundamental problems in statistical inference is how to 
process the data concerning a random variable that are accumulated through 
observation beyond what is known a priori. An isolated system is divided 
into two unequal subsystems where the larger of the two acts as the 
thermostat. Since energy can be exchanged between the two, it is a random 
variable. The prior probability Pr(e) for a state of a given energy e in 
statistical mechanics is taken to be proportional to the volume of phase 
space that the system would occupy at that energy. Through the process of 
measurement, this prior probability is converted into a posterior probabili ty 
Pr(e.lfl) according to the relation 

Pr(e ] f l )~  Pr(fl [ e) Pr(e) 

A measurement of the energy can be made with a thermometer and the 
estimable variable is the inverse temperature; Pr(fl le) is the "l ikelihood" 
that the unknown parameter has the value/3, given the datum 8. Proportion- 
ality means proportional in e regarding /3 as fixed. This is analogous to 
Bayes' theorem (Savage, 1962), except that the roles of the "parameter"  
and "observable" have been interchanged. In the Bayesian case, the param- 
eter/3 is considered random and it has a prior distribution that, if nothing 
else is known about the parameter other than that it is positive, may be 
taken as the logarithm uniform distribution (Lavenda, 1987). 

Thermostatistics assumes that the extensive and observable quantity e 
is additive. This means that if we take several sample systems from a 
population, each in contact with a thermostat with a uniform value of/3,  
then the total value of the energy of the composite system formed from n 
subsystems will be n times the sample mean energy, since the interaction 
energy among the subsystems is assumed negligible. The additivity postulate 
of the energies of the subsystems plays a role analogous to the assumption 
that the random variables are independent and identically distributed. As 
the number n of independent random variables increases, the sampling 
variance decreases a factor of 1/n, so that the estimate approaches its " t rue"  
value, in probability, in the limit as the number of observations increases 
without limit. 

The analogous case in thermostatistics would be to increase the number 
of subdivisions of the original system in contact with the thermostat. But 
because of  the assumed property of additivity and the macroscopic nature 
of the measurement, there is no gain in information from finer and finer 
subdivisions that could be achieved without destroying the additivity of the 
energy. The volume-to-surface ratio always must be large enough to warrant 
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the assumption of additivity by neglecting the energy of interaction. If, by 
making finer and finer subdivisions, or, analogously, by increasing the 
number of observations without limit, the statistical object could be reduced 
to a purely mechanical one, then the entropy would reduce to zero. Con- 
sequently, thermodynamic estimators lack the asymptotic property of "con- 
sistency," since making n measurements on n subdivisions of the original 
system does not improve the estimate of the parameter /3 (Lavenda and 
Scherer, 1987b). Inherent in this assumption are both a lower level to the 
statistical description and the reproducibility of macroscopic measurements. 
The latter implies the smallness of thermal fluctuations at equilibrium. 

The fact that the probability of a given value of the energy in any 
subsystem is dependent upon the sample mean energy of the subsystems 
and independent of the common value of fl of all the subsystems means 
that the energy is a "sufficient" statistic for estimating /3. Sufficiency in 
thermodynamics was first emphasized by Mandelbrot (1956, 1962). The 
property of sufficiency follows from the form of the posterior or Gibbs 
distribution; an exponential family of distributions satisfies the Fisher- 
Neyman factorization criterion, which essentially states that the conditional 
probability of observing a value of the energy of any subsystem, given the 
energy of the composite system, is independent of the parameter/3 that is 
to be estimated. 

Thermodynamic estimators also possess the property of "unbiased- 
ness." This property equates the expected value of the estimator with its 
true value. In fact, this is a fundamental postulate of statistical thermo- 
dynamics, which equates the expected value of an observable with the 
macroscopic, or thermodynamic, value of an extensive quantity. 

The conjugate, or dual, variable (in the sense of a Laplace transform) 
can be estimated from the likelihood function Pr(/3 l e) , which, in contrast 
to the posterior distribution Pr(e[/3), is a probability distribution in the 
sense of "degree of belief" rather than in the "frequency" sense (Lavenda 
and Scherer, 1987a). In order words, there is no frequency interpretation 
that can be attached to opinion that certain values of/3 are more probable 
than others. Pr(/31 e), or Pr(e I/3) if we "invert" the functional dependence 
of the posterior distribution where the energy is now the parameter and the 
conjugate quantity becomes the variable (Fisher, 1973), is not the proba- 
bility of a given value of the parameter/3. As a function of/3, the posterior 
density of the distribution Pr(e l/3) cannot be employed to compute the 
probability of a given value of/3, but rather must be used to compare the 
likelihood of different values of the parameter. The fact that the maximum 
likelihood value of the parameter coincides with the value obtained from 
the first moment, in terms of the expected value of the energy, is peculiar 
to exponential families where means and modes coincide [cf. equation (7)] 
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and this is responsible for the optimal properties of the statistical thermody- 
namic estimators. We recall that posterior densities that are exponential 
functions maximize the entropy and minimize discrimination information 
statistic. 

Although the criteria ofunbiasedness and sufficiency, if not consistency, 
apply to thermostatistic estimators, what would happen if there would be 
more than one candidate ? Intuitively, we would feel that the better candidate 
would be the one with the smaller variance. It is well known that the variance 
of an estimator is bounded below by the Cram6r-Rao (CR) lower bound 
(Cram6r, 1946; Rao, 1945), except perhaps for a statistic which is "super- 
efficient" having a Lebesgue measure zero (Le Cam, 1953). The CR lower 
bound is expressed in terms of the Fisher "information" (Fisher, 1973) and 
its derivation makes use of the Schwartz inequality for conjugate variables 
in the form that the covariance of conjugate variables cannot be greater 
than the product of their standard deviations. It is of no importance whether 
the variables are conjugate in the Fourier or Laplace sense and the resulting 
inequalities are the "uncertainty relations" related to the inherent limitations 
on the precision of physical measurements. In the Fourier case, they are 
the celebrated Heisenberg relations, while in the Laplace case they are the 
thermodynamic uncertainty relations, as first pointed out by Mandelbrot 
(1956). 

In this article we show that (1) the CR inequality is derivable from the 
second law of thermodynamics, (2) minimum uncertainty occurs for revers- 
ible processes where the conjugate variables are completely negatively 
correlated, and (3) in a composite system composed of a medium and a 
small body that are not in thermal equilibrium, a bound on the probability 
of arbitrarily large deviations in the energy is given by the difference in the 
entropies calculated at the two temperatures. Consequently, as body and 
medium approach thermal equilibrium, the energy tends to concentrate 
about its average value, thereby showing the diminished importance of 
fluctuations in an observable variable, such as the energy, at equilibrium. 

On one hand, the maximum uncertainty in the energy would therefore 
lead to the greatest precision possible in evaluating the temperature as 
would occur for an infinitely large thermostat. On the other hand, the 
maximum precision for measurements in the energy would occur for an 
isolated process in which there would be maximum uncertainty in the 
temperature. The former would apply to a canonical distribution, character- 
ized by the Gibbs density, while the latter would pertain to a microcanonical 
distribution, described by the structure function. 

For statistical decision problems in which one must decide in favor of 
one of two distributions, the likelihood ratio itself is considered as the 
relevant statistic (Wald, 1947). As far as the problem of statistical estimation 
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is concerned, maximizing the likelihood function is usually equivalent to 
maximizing the likelihood ratio, since the prior distribution drops out in 
the maximization. In the case where there is no direct observation made 
on the extensive variable, the likelihood function is no longer equivalent 
to the likelihood ratio as far as maximum likelihood estimates are concerned 
(cf. Appendix). We may consider the case where the log-likelihood ratio is 
the statistic as the "entropy representation," as opposed to the more familiar 
energy representation, where the energy is the pertinent random variable. 

2. LIKELIHOOD AND INDEX OF PROBABILITY 

The set of all possible outcomes of measurements made upon extensive, 
or observable, variables {e, k} defines a macroscopic space f~, where e is 
the energy and k-= {At, . . . ,  At} is the vector of the external parameters of 
the system. According to Gibbs (1902), the structure function po(e, k) 
determines the thermodynamic properties of the system. However, this prior 
probability density function (pdf) is " improper ,"  since Spo(e)de is not 
finite. In the simplest case, where the energy is a quadratic definite form, 
the volume in phase space is proportional to the volume of an ellipsoid 
(~-e-)N, where N is the number of degrees of freedom (Perrin, 1939). Thus, 
the structure function is proportional to the derivative of the phase space 
volume with respect to the energy, which is e v, where v = N / 2 - 1 .  For 
N > I ,  the probability that e is less than some fixed quantity a, 
So e~de/So e~de =0, because even though the numerator is finite, the 
denominator is infinite. We would therefore conclude that the probability 
that e is less than any finite value is zero. 

Even though the prior pdf  is improper, the posterior pdf  is a proper 
pdf. The log-likelihood ratio in Gibbs' formulation is 

~7 = -13e - log Z(fl) (1) 

which Gibbs (1902) called the "index of probability." The log's will refer 
to the natural or Naperian logarithms. Omitting the region of integration 
when it is the entire sample space, one has for the norming constant 

Z(~) = j e-e~po(e) de (2) 

The Laplace transform of the structure function (2) is known as the moment 
generating, or "partit ion," function. It ensures that the posterior pdf  

e-B~ 
p,(e I/3) -- z - ~ p o ( e )  (3) 

is a proper pdf  and generates an exponential family of distributions, the 
family of the exponential type determined by po(e), as/3 ranges over its 
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values. The exponential family is a slight generalization of the types of 
distributions introduced by Koopman (1936) and Pitman (1936) in their 
study of sufficient statistics. 

Transferring our attention to the random variable rt, we consider the 
moment generating function 

M(y)=f e~pode=fp'(p~-~de (4) 

The generating function (4) has the following properties: 

(i) M is a positive and monotonically decreasing function of  the 
parameter 7. 

(ii) m(y)~oo for 7 ~ 0 .  
(iii) For any 3' > 0, M'(7) has derivatives to all orders and, in particular: 
(iv) 02 log M/072> O. 

We will continue to use partials to indicate that the other parameters upon 
the moment generating function can depend are held constant. 

In an exactly analogous way that the Gibbs pdf  is obtained from the 
structure function [cf. equation (3)] we now have the associated pdf  

e -r~ 

pl( e l O ) =-M--~)po(e ) (5) 

with the generalized log-likelihood ratio 

~7#(0) =- Y~7(3) - l o g  M = - O e  - l o g  Z#(O) (6) 

where the generalized partition function Z#(O)=S e-~ de and only 
# 

the product 0---/37 appears. The generalized index of probability r/ 
reduces to Gibbs' definition (1) for the value y = 1. 

The generalized index of probability ~7#(O) is a concave function of 
the "variable" O, since Z # is a positive and monotonicaly decreasing 
function of O. As O-~ 0 and O ~ oo, the negative of the generalized index 
of probability tends to infinity, so that it necessarily possesses a single 
minimum at the point 

07/~ O log Z # 
- - - =  e-t- - -  0 (7) 

00 00 

The likelihood equation (7) is an implicit relation, which may be inverted 
to obtain the most likely value of 0 = O(g), where 

g = - (0  log Z#/O0)~=# 
since 02 log Z# /002>  0. Thus, the generalized index of probability r/# is the 
log-likelihood ratio in statistical inference and because the distribution is 
exponential, the most probable and average values coincide. Furthermore, 
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the most likely value of the log-likelihood ratio coincides with its average 
value 

g?#(O) = f p~(e I ~) log p'~(e [0) de = - O f  - l o g  Z#(O) (8) 
po(e) 3 

3. A M E A S U R E  OF IRREVERSIBILITY 

We now reinstate the dependences on the vector of the external param- 
eters of the system k with the intent of giving (8) a thermodynamic interpreta- 
tion. The total differential of the maximum likelihood value of the general- 
ized index of probability (8) is 

r 

d,~(,~) -~d~- E al~ = - -  dAk (9) 
k = l  OAk 

due to the likelihood equation (7). 
Consider a body at temperatuer T interacting with a medium at tem- 

perature To and suppose, for concreteness, that To> T. Usually, the tem- 
perature will be measured in energy units, but, where appropriate, we will 
convert to temperature measured in degrees by substituting T-+ kB T, where 
ka is Boltzmann's constant. Moreover, the index "0" will be used to refer 
to the medium, while unindexed quantities will pertain to the body. 

In addition to heat transfer from the medium to the body, an amount 
r 

of work d W = ~ k = l  F 0 dA~ is done by the medium on the body. Whereas 
the forces F ~ represent the applied, or observed, values of the forces acting 
on the body, the values of the forces that the body is expected to exert are 
given by 

1 8 1 o g Z  # 1 Ologpo 0f 
F~ . . . .  (10) 

0 OA k 0 Oh k OA k 

A derivation of this formula and a comparison with another derivation of 
the expected values of the forces based on the so-called principle of 
"adiabatic invariance" is given in the Appendix. Introducing (10) into (9) 
results in 

~ dg ) 
d~#(O)=-O d f -  ~ - - d A k ~  (11) 

k=l al~k J 

Now, according to the first law of thermodynamics applied to the body, 
_~_ r 0 0 the change in its average energy is given by dg=  dQ ~k=l Fk dhk, where 

dQ is the heat given up by the medium. Due to the conservation conditions 
dh ~ = -dhk for each k, equation (11) can be written as 

d(7#(O)=-O{ do+ k=l~(Fk--F0k) dhk} : - ~ T d S  (12) 
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where dS is the entropy increase of the body. Since the left-hand side is a 
total differential, so, too, must be the right-hand side, and this leads to the 
identification O = 1/T, where T is the temperature of the body. 

According to the principle of global conservation of energy, dg = -dgo,  
where dgo = dQo-~k=l F ~ dA ~ Introducing this expression into equation 
(11) and applying the second law, we get 

( Fk -- F~ ) dA ~ O To dSo (13) d~#(O) = 0 dQo+k~_ ~ = 

where dSo is the change in entropy of the medium. Applying the second 
law to the system (body + medium), dS + dSo >- O, we may transform equation 
(13) into the inequality 

To 
d##( O) >- ---~ dS (14) 

But, since the left-hand side is given by equation (11), the inequality can 
be written as 

d g - T o d S +  ~ FkdAk<--O (15) 
k = l  

This well-known inequality asserts that spontaneous irreversible pro- 
cesses occurring in the body will cause the quantity given on the left-hand 
side of (15) to decrease until it attains its minimum value at equilibrium. 
Under conditions of constant temperature (equal to the equilibrium tem- 
perature of the medium To) and volume (where there is only a single A, 
which is the volume), it is the free energy of the body that decreases until 
a state of equilibrium is reached between the body and medium (Landau 
and Lifshitz, 1969). We will now show that the parameter % which is 
conjugate to the index of probability, characterizes a state of "disequili- 
brium" between the body and the medium, or, in other words, the degree 
of  irreversibility of the process. 

The moment generating function (4) can be written as 

M(y)= f e"(~)po(e) de= f e(~-l)"(~p,(el~) de (16) 

For y > 1, the extended Chebycheff inequality (Kolmogorov, 1956) gives 

M(y)>- exp[(y-1)~7(e)] pa(elfl) de 

- exp{-(y - 1)[/~a +log Z(fl)]} Pr{e -< a} (17) 
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Rearranging, we get 

z~(o) Pr{e<_a}<-exp[(7-1)/3a + log Z-~-~- ] (18) 

But this must be true for admissible values of the parameter y, or, 
equivalently, for O at a fixed value of/3, and, in particular (Chernoff, 1952), 

Pr{e -< a}-< exp[- /3a - l o g  Z(/3)] inf[exp(Oa +log Z#)]  (19) 

The stationary value of (19) gives 

a = - ( 0 1 o g Z # / 0 0 ) o = ~ =  g 
which turns out to be a minimum, since Z # is a convex function. Con- 
sequently, inequality (19) becomes 

Pr{e -< g} -< exp[S(O) - S(/3)] (20) 

In order that the right-hand side of (20) be a valid upper bound, it 
must be less than 1, which implies that S(/3)~ S(O). Since the entropy is 
necessarily a nonincreasing function of the inverse temperature, it follows 
that/3 -< O. And since there are only two temperatures in the system, T = 1/ 
and To, the latter is identified as /3-1. This establishes that y = To/T. As 
~/~ 1, thermal equilibrium is established between body and medium and 
the energy tends to concentrate about its average value. 

This conclusion can also be deduced directly from the definitions of 
the average generalized probability index (8), where ~ # ( O ) = - S ( O ) ,  and 
the average probability index 

~(/3) = f p [ ( e  l O)log pl(e [/3) de = -S(/3)  po(e) 
since their difference is precisely the minimum discrimination information 
statistic (Kullback, 1959) 

f , p~(e 16) S(/3)-S(O) = p#,(el6),og-p-(e(~-yde---*I#(/3,~)>_O (21) 

which follows from the inequality xl log(xl/x2)>-xt-x2 and the fact that 
p [  and p~ are proper pdfs. 

The associated pd fp~(e  [ O) minimizes the discrimination information 
statitic 

f , pl(elO) de I(/3,0)= pl(E I O) ,og p -~  1/3) 
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subject to the constraints S ep,(e 10) de = g and Sp,(e ]0) de = 1 (Kullback 
and Khairat, 1966). The larger the value of  1(/3, O), the worse the 
"resemblance" between the observation and the value predicted from the 
ensemble with the probability density pl(e[fl). In other words, the larger 
the value of  the discrimination information statistic, the greater is the 
irreversibility of the process and the larger are the deviations in the estimates 
of the temperature based the assumption that the observations of the energy 
are made on a body that is in a state of thermal equilibrium with the medium 
at the equilibrium temperature/3 -1 . 

4. UNCERTAINTY RELATIONS AND THE CRAMER-RAO 
INEQUALITY 

Suppose that 0 differs slightly from a known, fixed value of ~/, which 
is the inverse of the equilibrium temperature, by the amount A/3. The 
discrimination information statistic is 

1(/3, fl +A/3) = f p,(e I/3 +A/3) log 
pl(e I/3 +Aft) 

p,(e I/3) de (22) 

With the aid of the series expansion log(l+x)=x-�89 the 
logarithm in (22) can be approximated as 

pl(~ 1/3 +a/3) log 
p,(~t/3) 

=log{ l + Pl(e[/3 + A/3)-Pl(e'/3)} 
pl(e]#) 

pl(e ]/3 + A/3)-p1(8[~) 
pl(e[#) 

_ l pl(  I/3 +_ I )}2 
21. p,(~l/3) +o[(a/3)q 

Replacing the logarithm in (22) by this expression and expanding 
pl(e [/3 +A/3) to first order in A/3, we obtain 

1 ~ 0 log pl(e l ( f l , /3+A/3)=~. O/3 [/3)P1(el/3) de(A#)2+o[(A#)q 

l I (  'Ol~  " '~" 
~----- E a (a/3)2+ o[(a#)q 2 

1 2 2 -----~crE(AI3) +o[(A[3) 2] (23) 

where cr 2 is the variance in energy. 



Thermodynamic Uncertainty Relations 1079 

For small values of A/3, we have (Khinchin, 1949) 

02 log ZA/3 + o[(a/3) 2] 
Ae - 0/32 

so that the second inequality in 

1(/3,/3 + A/3) = lcr2(a/3)2 + o[(A/3) 2] 

1 020~ Z(a/3)2 + 0[(A/3)2 ] 
2 

can be written as 

(24) 

(25) 

~A/3 = - a e  (26) 

If the medium does no work on the body (i.e., constant volume while it 
gives up heat to it by the amount -Qo = -To  ASo = Q, then Ae = -To  ASo. 
Because of the law of the increase of entropy, AS + ASo-> 0, equation (26) 
can be written as the inequality 

o-~Afl >_ - ToAS (27) 

At constant volume d S =  Cvd ( log  T), where Cv is the heat capacity 
at constant volume. Provided the heat capacity is constant, the entropy 
change will be 

T o + A T  A T  
AS  = Cv log - -  Cv 

To To 

But since A T = - T  2 A/3, inequality (27) can be cast into the suggestive form 

o~cr~ _ 1 (28) 

where o-~ = 1/TZCv is the variance of the conjugate parameter /3. It is 
related to the mean square fluctuations in temperature by (A T) z = 4 2 Tocrt~. If 
T is measured in degrees, then 2 2 o'e > - kB T2 Cv and o'~ so = kB/ToCv,  that 
inequality (28) can be written in an analogous form to a quantum mechanical 
Heisenberg uncertainty relation 

%o'~ _> kB (29) 

showing that Boltzmann's constant kB plays the role of Planck's constant 
in statistical thermodynamics, 

The minimum uncertainty in measurements of conjugate thermo- 
dynamic variables occurs for reversible processes for which the total entropy 
vanishes. If the body were isolated from the medium, the internal energy 
could be determined with unlimited precision at the expense of having 
knowledge about the temperature. Alternatively, if the medium constituted 
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an infinite thermostat, the temperature could be determined precisely with 
a maximum uncertainty in the internal energy. 

The uncertainty relations of thermostatistics, between conjugate (Lap- 
lace) variables, are known in mathematical statistics as the CR inequality. 
It provides the lower bound to the variance of the distribution in terms of 
the inverse of  the Fisher information, which is the local form of the minimum 
discrimination information (23) (Kullback, 1959). An estimator having the 
variance of  the CR lower bound is consistent, unbiased, and, since it is 
inversely proportional to the number of  observations, its variance goes to 
zero as the number of observations becomes indefinitely large. In thermo- 
statistics, we may only conclude that the variance of the CR lower bound 
is achieved for reversible processes, since thermostatic estimates are insensi- 
tive to the sample size or how fine the subdivisions are made. Usually, as 
the sample size increases without limit, what would be probable would 
become almost certain. Alternatively, we could imagine such a finite sub- 
division that the object of our investigation would no longer be statistical 
and, consequently, its entropy would shrink to zero. 

In order to make the connection between the thermodyamic uncertainty 
relations and the CR lower bound more precise, suppose t ha t / 3 ( f )  is an 
unbiased estimator of/3, which is obtained by solving the likelihood equation 
e +0(log Z)/O/3 = 0. The property of unbiasedness requires 

f e-/~ [/3 - /3  (g)] Z----~p0(e) de = 0 (30) 

Differentiating with respect to/3 gives 

f e_~e 1+ [/3-/3(g)](e-g)'~--(fisde=-l+cov(~,e)=O (31) 

The correlation coefficient p is defined as the ratio p = cov(/3, e)/o-~o-r and 
since the covariance cov(/3, e) is negative, p is negative, implying negative 
correlations between the conjugate variables e and/3. Furthermore, since 
[p]-< 1, we get o-~o-t~ -> 1 for temperatures that are measured in energy units. 
We have derived the same inequality from the second law, which provides 
a physical interpretation of  the CR lower bound. 

The statistical efficiency of the unbiased estimator is defined as 

eff(/~ (g)) = {o.eo. } 2 

Maximum efficiency occurs when the conjugate variables are completely 
negatively correlated (i.e., p = -1 )  and this implies a perfect linear negative 
relationship between the variables. The values of p on the closed interval 
[ -1 ,  0] can be used as a measure of the degree of correlation between the 
conjugate variables and provide some valuable insight into the modification 
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that the equations of state must incur as the system moves away from 
thermodynamic equilibrium. The lack of linear correlations between/3 and 
e can be deduced from the value p = 0, but it cannot be concluded that the 
variables are statistically independent, while the converse is true. 

The CR lower bound is inversely proportional to the number of observa- 
tions, so that any estimator having this variance will be asymptoticaly 
consistent as the number of observations becomes indefinitely large. In 
thermostatistics, the asymptotic values of the variance is approached in the 
limit of a reversible process and will always remain finite, since there is no 
inverse dependence on the number of observations or the number of sub- 
divisions o f  the original system. 

There is a definite similarity between uncertainty relations and measure- 
ments in quantum mechanics and thermostatistics. Consider the uncertainty 
relation between momentum and position. Momentum may be "estimated" 
from measurements of position by a time-of-flight technique (Feynman and 
Hibbs, 1965). The error in the momentum is proportional to the uncertainty 
in the initial position of the particle. The error in determining the initial 
position of  the particle would be analogous to the standard deviation of 
the sample mean energy and the estimate of the momentum in terms of 
position measurements corresponds to the estimation of the temperature 
from observations made on the energy. 

A P P E N D I X  

According to the principle of "adiabatic invariance" the a priori proba- 
bility "must always depend on those quantities which remain invariant 
under adiabatic influencing. ''2 An adiabatic process requires that the change 
in the external coordinates be slow that at any instant the body may be 
regarded as being in a state of equilibrium. The fact that oS/~Ak a Ak implies 
that an adiabatic process is also a reversible process, since when hk -~ 0, sO 
does dS/dhk (Landau and Lifshitz, 1969). However, since an adiabatic 
process requires the entropy of each subsystem of the composite system to 
be constant, rather than requiring that the total entropy of the system be 
constant, not every reversible process is an adiabatic process. 

Khinchin (1949) and, more emphatically, Mandelbrot (1964) have 
claimed that in order for the quantity ~13 dQ, calculated over a cycle, to be 
path-independent it is sufficient that 

f(0 ) - f l  -~k e-r176 ~) de OZ(fl, ~.) (A1) 
OAk 

In order for condition (A1) to hold, it is necessary that O log po/OAk -= O. 

2paul Ehrenfest in a letter to A. F. Jotte (see Klein, 1985, p. 261). 
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As far as the estimation of the parameter 13 was concerned, it was 
immaterial whether we considered the log-likelihood ratio, 
log[p~(e[/3)/po(e)], or the log-likelihood function, logp~(e[/3), since the 
two differ by a constant factor, which cancels out in the maximization. 
However, if the expected values of the forces are to be estimated, then the 
two log-likelihoods cannot be used interchangeably. 

We now show that equation (10) is, in fact, correct by using what 
Lorentz (1916) called "la remarquable insensibilit4 de la formula de 
Boltzmann," insofar as the Boltzmann and Gibbs definitions of entropy 
essentially coincide for a system in equilibrium. According to Boltzmann, 
the definition of temperature is 

d =/3(g) = (0 log po/Oe)~=~ 

and expected forces are 

Fk = -fi-~ 0 log p0(e, M/OAk. 

These are precisely the maximum likelihood estimates that render the 
log-likelihood function log p~(e [/3, k) an extremum. 

The total differential of the log-likelihood function is 

d log p~(e [fl, k) 

0log Zd/3 r = - e  dfl-/3 de - ~ O l~ 
0/3 k=l OAk 

+ 0 log Po de + ~ 0 log Po dAk 
Oe k=l OAk 

Evaluating (A2) at the maximum likelihood value 

g = -(O log Z/O/3)~=~ 

yields 

d logp,(~lfi, X) 

 ,o po3 

(A2) 

(A3) 

The condition for an extremum, d log pl(g]fi, k) = 0, is satisfied by requiring 
the terms in the parentheses to vanish; this yields the Boltzmann definition 
of temperature and expected external forces. The maximum likelihood 
estimates and their average values coincide precisely because they have 
been obtained from an exponential family of distributions. Furthermore, 
the Gibbs and Boltzmann definitions of entropy coincide, namely 

- d #  -- d log po(g, k) 
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due to the extremum condition of the log-likelihood function, 
d log pl(g [/3, k) = 0. This is in full support of Lorentz's statement about the 
remarkable insensitivity of the Boltzmann definition of entropy at equi- 
librium. 

It is somewhat curious that both derivations can be found in Gibbs 
(1902) without any mention of the principle of adiabatic invariance. In the 
first case, he considers 

e-t3"v=f...fe-t3~dpl...dq~ (A4) 

where the integrals extend over all phases in phase space and �9 is the 
Helmholtz free energy. Assuming the external coordinates to be "contained 
implicitly in e," he compared the total differential of (A4) with the thermo- 
dynamic relation 

r 

d~=-fl-2~d~+ E (Og/Ohk) dhk 
k = l  

to obtain Og/Oak =--Fk. 
In the second case, Gibbs considered 

j e -t~̀ +e~ de (AS) e-J3~ = 

where the external coordinates are "contained implicitly in ~," which in 
our notation stands for log Po. A comparison of the total differential of (A5) 
with the thermodynamic relation now gives O--~/OAk = flFk. 

The first derivation implies a certain "conditioning" of the random 
variable e upon the external coordinates. Actually, it is not the random 
variable itself that is a function of the external coordinates, but rather its 
average value, which is defined thermodynamically. Such a conditioning of 
a random variable is completely foreign to mathematical statistics and the 
method of maximum likelihood indicates that the correct procedure is to 
consider the prior density Po to be a function of the external coordinates 
rather than the random variable itself. 
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